If it's not what You are looking for type in the equation solver your own equation and let us solve it.
33=38t^2
We move all terms to the left:
33-(38t^2)=0
a = -38; b = 0; c = +33;
Δ = b2-4ac
Δ = 02-4·(-38)·33
Δ = 5016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5016}=\sqrt{4*1254}=\sqrt{4}*\sqrt{1254}=2\sqrt{1254}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1254}}{2*-38}=\frac{0-2\sqrt{1254}}{-76} =-\frac{2\sqrt{1254}}{-76} =-\frac{\sqrt{1254}}{-38} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1254}}{2*-38}=\frac{0+2\sqrt{1254}}{-76} =\frac{2\sqrt{1254}}{-76} =\frac{\sqrt{1254}}{-38} $
| -2+3y=y+-2+-4y | | 11y+12=15y-12 | | 5m=64.75 | | 2x-14=x+27 | | 4x+9=9x+16 | | 2x=20*6 | | 15.44=1.6(v+2.2)+2 | | 2x+49=121-6× | | 5(2-3y)-9y=4(3-2y | | 3(3x-5)=-11x-2 | | 40=4-(6)x | | 0=21z^2-6z+1 | | 3943.75=15.25d-250 | | 1/4(8x+16)=19x | | 23n+7=16n+28 | | 7/8x+1/8x=2 | | 5d-42=73 | | 5/12x+10/3=5 | | X=134+9x | | 8=5z=43 | | .2x-2=8 | | 5/6y=-10/13 | | 0.50x+45=50 | | 1025=(b*9)+7 | | 4z−1=√25z2−14z+2 | | 1/3b-10=2/9b | | 15y2+32y+16=0 | | x-42=98+9x | | 32b-20= | | 2/5c=3/6 | | -2m+7/8m=0 | | x+-5=12.4 |